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Abstract 

Structures which can be considered to be built up from 
slabs of identical material, each displayed by a constant 
amount with respect to its neighbours, are described in 
terms of the shift lattice and the general form of their 
diffraction patterns has been derived. The theory is 
illustrated by reference to the (M,Ti)Oz_ x crystallo- 
graphic shear (CS) structures, the alloy AusMn 2 
antiphase domain structure and a number of hypothetical 
constructions. 

1. Introduction 

As the techniques of recording and interpreting 
diffraction patterns have improved, the description of 
non-stoichiometric and other similarly complex phases 
has evolved from that of an average structure towards 
more sophisticated models. One of the more fruitful of 
these developements is the recognition that many of 
these compounds are built up from a stacking of identical 
slabs of a parent structure (Wadsley, 1963; Hyde & 
Andersson, 1989; Tilley, 1987). It is often convenient to 
focus attention upon the boundaries between these slabs 
of perfect structure. In the case where the slab 
thicknesses are regular, the boundaries are ordered. 
Changes in the thickness of the ordered slabs produces a 
homologous series of stoichiometric compounds char- 
acterized by wider or narrower boundary spacings. In the 
cases where the slabs are of variable thickness, the 
boundaries can be thought of as disordered planar defects 
in a host matrix. Variable numbers of such defects yield a 
disordered phase which will frequently be operationally 
non-stoichiometric. One of the best known examples of 
this structural principle is to be found in the crystallo- 
graphic shear (CS) phases (Hyde & Andersson, 1989, pp. 
27 and 98; Harbum, Parry, Tilley & Williams, 1992). 

In a previous publication it was noted that these phases 
could be treated in terms of the shift lattice, an alternative 
concept in which attention is focused upon the slabs of 
structure rather than the boundaries (Harburn, Tilley, 
Williams & Williams, 1991, 1993; Tilley & Williams, 
1995). The elaboration of this idea is presented in this 
paper. The theory of the shift lattice for general planar 
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boundaries, which has not been developed previously, is 
presented in the following section. The application of the 
theory to an analysis of diffraction patterns is outlined by 
way of two apparently quite different examples, the 
TiO2_ x system which contains CS planes and the 
Au3_xMn system in which antiphase boundaries are 
found. Finally, the way in which the shift lattice, with 
appropriate parameters, can be used to construct various 
new structures and the diffraction patterns which such 
structures would produce concludes the paper. 

2. Shift-lattice distributed planar faults 

2.1. Preliminary remarks 

The structures under consideration in this paper are 
essentially three-dimensional. For simplicity, however, 
the exposition will be two-dimensional, there being 
generally no formal difficulty in the extension to three 
dimensions. The mathematical entity at the heart of the 
discussions is the two- (or three-) dimensional comb and 
we therefore start with some background information 
concerning it. It consists of a two-dimensional lattice of 
unit-magnitude point-delta functions, that is to say that 
there is a delta function with a point singularity at every 
lattice point on the plane. If a single such delta function 
with its singularity at the origin of r space (r being the 
position vector on the plane) is given the symbol 8(r), 
then the comb may be described by 

~ 8{r - (ma ! + na2)}, 
m n 

where al and a z are the lattice parameters and the 
summations (as are all summations in this paper) are 
between -0o  and +oo. Hsu (1967) has provided a useful 
notation for the one-dimensional comb; we extend this to 
two dimensions and define the two-dimension comb as 

8~,.a2(r ) = ~ ~ 8[r - (ma 1 + na2) ]. (2.1) 
m n 

The notation on the left-hand side of (2.1) immediately 
displays the space (r) in which the comb and also the 
lattice parameters a~ and a 2 in this space exist. Its great 
advantage in analytical work is that it 'hides' the double 
summation on the right-hand side of (2.1), the summa- 
tion often not being explicitly needed. The extension of 
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Hsu ' s  notation to three dimensions is obvious. We finally 
remark,  concerning (2.1), that we have found it slightly 
advantageous to use Greek letters to symbolize distances, 
allowing the use of  Roman letters for other purposes, 
particularly when comparing parameters in our work 
with those used by other workers in the field. 

2.2. P l a n a r  f a u l t  s t ruc tures  

Fig. 1 illustrates schematically a two-dimensional 
example of  the structures under consideration in this 
paper. Each circle represents the singularity of  a point- 
delta function and we see at once that the structure has 
lattice-like attributes. Closer examination of  the figure 
reveals that the region between the dotted lines AA' and 
BB'  is a ' s lab '  of  perfect crystal lattice, as is the region 
between the lines C C '  and DD' .  (The dotted lines are 
assumed to be infinitely long.) However ,  between the 
two regions, there is a fault in that the lattice of  the 
second region is displaced with respect to that in the first 
region by a vector displacement 7. (It may here be 
remarked that there is an infinite number  of  ways of  
defining 7, namely the vector distance from any delta- 
function singularity in the first region to any singularity 
in the second. No essential difference in the analysis, 
however,  ensues upon the particular definition of  Y and, 
in practice, we choose the most  convenient. More will be 
said of  7 later.) 

Consider now the central slab (i.e. that between AA' 
and BB' )  in Fig. 1. If  we let g be a function of  r (r having 
the rectangular Cartesian coordinates x and y illustrated), 
which is unity between AA' and BB'  and zero elsewhere, 
then the set of  delta functions whose singularities lie 
between these two dotted lines can be represented by the 
product of  g and 8.,..2 (r). We concentrate further on the 
nature of  g. It is clear from Fig. 1 that if the dotted lines 
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Fig. 1. Schematic diagram of a perfect lattice interrupted by planar 
faults distributed as a shift lattice. Each lattice point is shown as a 
circle. Each 'slab' of perfect lattice is of width w I and the slabs are a 
vector distance p apart. This particular lattice is square and its 
parameters are a~ = 4i and a 2 = 4j arbitrary units. The lattice in the 
slab to the right of the central one is displaced one and two units in 
the x and y directions, respectively, with respect to that in the central 
slab, i.e. e I = ¼ and e 2 = I. 

were vertical, then g would be a function of  x only and 
would be constant along any line parallel to the y axis. 
Indeed, with rect(x) defined in the usual way [i.e. 
rect(x) = 1 for - ½  < x < + ½ and zero elsewhere], then 
for vertical dotted lines and a slab of  width w I , we would 
have g = r e c t ( x / w  l) = rect(wTx) = rect(wTi, r), where 
w T = 1 / w  I. T h e  generalization of  this for an arbitrary 
angle of  dotted lines is 

g -- rec t (wl* ,  r),  

where the mutually perpendicular set of  vectors w~, w 2 
has w~', w~ as its consequently mutually perpendicular set 
of  reciprocal vectors. The modulus of  the vector w~' is 
thus the reciprocal of  that of  w~. The vector w 2 
(perpendicular to Wl) may,  however,  be of  any finite 
length and has no real physical significance; it is defined 
merely to provide a pair of  vectors (namely w~ and w 2) to 
enable us to assign meaning to w T. 

The Fourier-transform derivation in §5 does not 
depend upon the fact that the g function is a rect 
function; we will therefore leave it arbitrary at g(w~' • r)  
and note therefore that the central slab may be 
mathematically represented as g (w T • r)8.,..2 (r). The slab 
to the right of  the central one has its g function displaced 
by a vector distance ] / (which  may be taken as parallel to 
w T, although this is not essential), whose function is now 
therefore g{w~ • (r  - ,8)} and has its lattice displaced by 7 
so that the comb appropriate to it is 

8.,,.2 (r  - 7). 

This slab is therefore represented by 

g[w~'. (r  - # ) ] 8 . 1 , .  2 (r  - 7). 

In general, the mth slab to the right of  the central one is 
therefore represented by 

g[wT- (r  - mp)]8., ,~ (r  - mT), 

and so the entire structure, f ( r ) ,  is represented by 

f ( r )  = )--~'~ g[w T • ( r  - mp)]8., ,.2 (r  - mT). (2.2) 
m 

In three dimensions, we replace the 8,,~ .2 in (2.2) by 
8. _ . and note that the vector p,  which defines the 

I,W2, 3 . . . .  
interslab distance, is not necessarily m the a 1 , a 2 plane. In 
general, therefore, these planes are in an arbitrary 
direction with respect to the underlying sublattice 
vectors. 

We now examine Y in more detail. It proves useful to 
express it as a linear combination of  a I and a 2, thus 

7 = elUl + e2u2" (2.3) 

Here, the es are dimensionless quantities which are most  
conveniently taken as positive proper fractions. 
Examination of  the example in Fig. 1 reveals that e~ - 
the fraction of  a~ in its direction by which the lattice has 
been displaced across the fault - is ¼ for this example,  
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while e 2 - the corresponding fraction of  II 2 - -  is ½. If  any 
integer were added either to e ! or e2, there would be no 
difference in the 8a~,a 2 term in (2.2), since a comb 
displaced an integral number  of  lattice parameters which 
remains invariant. Hence, we may choose the proper 
fractional form of the es. In three dimensions, a term e3a 3 
must be added to the right-hand side of  (2.3). 

We now state, with the aid of  (2.2) and (2.3), the final 
form of  the structure f ( r )  as 

f ( r )  = ~--] g[w~'. (r  - m]/)] 3a,.a2[r - m(e la  I q- e2a2) ]. 
rn 

(2.4) 

The set of  delta functions in (2.4) is merely the 
skeleton of  the structure. Associated with each delta 
function in any actual material of  interest is a motif  
consisting of  an atom or a certain arrangement of  atoms. 
We presume that the approximation is good enough that 
all motifs in any given structure are identical ,  so that the 
material can be represented by the convolution o f f ( r )  in 
(2.4) with a function representing the motif. If  this latter 
function is, say, q(r),  then the material is represented by 

f ( r )  • q(r)  (2.5) 

where the asterisk denotes convolution. 

2.3. The Fourier  transform o f  the structures 

Since diffraction patterns of  materials are (to varying 
degrees of  approximation depending on the nature of  the 
irradiation upon the material) Fraunhofer diffraction 
patterns, which in turn are the intensity patterns from 
the Fourier transform of the structure, we need to 
determine this transform. We define the transform H(s)  
of  h(r)  thus: 

n ( s )  --- f h ( r ) e x p ( - 2 z r i r ,  s)dr,  

where s is the space reciprocal to r, d r  is an elementary 
area in r space and the integral is over all r. The 
convention is that a function in r space is represented by 
a small letter (here h), while its transform in s space is 
represented by the same capital letter (here H). 

The convolution theorem states that the transform of a 
convolution of  two functions is the product of  the 
individual transforms. Hence the transform of (2.5) is 

F ( s ) a ( s ) .  (2.6) 

Expressions (2.5) and (2.6) illustrate the central im- 
portance of  knowing F(s )  as a means of  obtaining 
information concerning f ( r )  from diffraction patterns. It 
is shown in §5 that 

F(s)  = A ~ ~ G(w I • Shk ) t~fl,[Shk + (he I + ke2)]/*], 
h k 

(2.7) 

where 

Shk = S -- (ha~ + kay), (2.8) 

A is a positive constant, G is the one-dimensional 
transform of g (so that if g is a rect function, G will be a 
sinc function) and the 8~. term is a comb consisting of  a 
single row of point delta functions spaced if '  apart. 

Fig. 2 is a schematic diagram of the transform of the 
structure illustrated in Fig. 1. The solid circles represent 
point-delta functions of  various amplitudes and the open 
circles the points ha T + kay, i.e. the points of the 

* and * At reciprocal lattice whose parameters are a 1 a 2. 
these points in s space, Shk = 0 by (2.8) and so we may 
take these points as origins in Shk space for any particular 
h and k. When h = k = 0, the appropriate term F00(s ) in 
(2.7) is 

Foo(S) = AG(w 1 • s) 8#,(s), 

and so, on the slanting line through the origin of  u and v 
in Fig. 2, we see the point-delta functions of the comb 
8#.(s), spaced fl* apart, amplitude modulated by 
G(w 1 • s), the sinc function which is the one-dimensional 
transform of the rect function g(w T • r). The term Fl0(s ) 
in (2.7), when h =  1 and k = 0 ,  is F10 ( s )=  
AG(wl  • sl0)8~.[sl0 + (fl*/4)] (it being remembered that 
e I = ¼ in this example) and so we see the reflections, 
modulated by the same G function as for h - - k  = 0, 
shifted to the 'north west '  by ]/*/4 compared with the 
unshifted ones astride the origin. We may proceed 
likewise to interpret the reflections on the slanting line 
appropriate to any h and k. 

3. Applications 

3.1. Crystallographic shear: the TiO2_ ~ system 

Structures analogous to that shown in Fig. 1 occur in 
the crystallographic shear (CS) phases (Hyde & 

Fig. 2. Schematic diagram of the Fourier transform of the structure in 
Fig. 1. The reciprocal space s has Cartesian components u and v. 
Each slanting line contains the reflections appropriate to one term of 
(2.7). The open cirlces are the points ha T + kay, so that at these 
points in s space, Shk = 0 by (2.8). We can therefore imagine the open 
circles as 'origins' in Shk space for the reflections appropriate to a 
particular value of h and k. It is seen that each series of reflections, 
spaced fl* apart, is displaced by -(he I +Ke2)ff' , in this case, 
-(h/4 + k/E)fl*. 
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Andersson, 1989; Tilley, 1987). The boundaries of the 
slabs of perfect parent structure are CS planes which are 
effectively planes of collapse in which a sheet of O atoms 
is eliminated from the structure. The CS operation 
therefore moves the composition of the crystal towards 
the metal-rich region of the phase diagram. The process 
will be illustrated here with reference to the reduced 
rutile system. Initial reduction occurs by collapse on 
{ 132} (it being understood throughout this paper that the 
indices refer to the parent rutile structure), while 
reduction below a composition of ca TIO1.89 is 
accommodated on { 121 } planes. In the composition 
range between ca TIO1.93 and TiO1.89, the CS planes 
swing in orientation from {132} to {121} so that a 
continuum of orientations is possible. Despite the range 
of CS planes involved, all have the same collapse vector, 
(½)(011). Idealized representations of some of these are 
shown in Fig. 3. The {132} and swinging CS regions 
consist of ordered intergrowths of pure CS components 
as in the {121} CS planes, labelled C, and antiphase 
components as in the {011 } planes, labelled A. 

The relation between the CS parameters and the shift- 
lattice parameters are simply that al, a 2 and a 3 
correspond to a, b and c, respectively, and the collapse 
vector (½)(011) to e I = 0 ,  e 2 = e  3=½. That the CS 
planes lie at an angle to the section in Fig. 3 is a 
reflection of the fact that the vector fl is not in this plane. 

We now make a point concerning the nature of the 
motif function q(r) introduced earlier. An examination of 
Fig. 3 shows that it is the Ti atoms that are distributed as 
a shift lattice, while the O atoms form merely a 
crystallographic framework. It should be emphasized, 
therefore, that the structures shown, taken in their 
entirety, are not shift-lattice distributed, but merely that 
the Ti atoms in it are so distributed. The function q(r) 
therefore represents the scattering factor of one Ti atom 
in this example. 

The form of the diffraction patterns generated by such 
structures is shown by Hyde & Andersson (1989) (Fig. 
48, p. 102). The diffraction patterns conform in appear- 
ance to that shown in Fig. 2. In some cases, the line of 
spots from the origin, in a ,8* direction, points towards a 
main reflection. In any one line of such spots, those 
immediately surrounding different main reflections may 
be incommensurate with each other, depending upon 
IP*I. We have, therefore, in the swinging region, two 
levels of incommensurability. If the direction of ,8* is 
such that it fails to point from the origin towards any 
main reflection, then the structure is automatically 
incommensurate. If, on the other hand, fl* does point to 
a main reflection, as in the case of ordered arrays of the 
planar boundaries shown in Fig. 3, then the boundaries of 
the g functions are still in the direction of a crystallo- 
graphic plane, but the structure will be incommensurate 
if IP*I is such that the phase of each succeeding g 
function boundary is changing with respect to the 
underlying crystal structure. 

3.2. Antiphase boundaries: the Au-Mn system 

The Au-Mn system of alloys contains a number of 
complex structures. These are basically derived from a 
cubic parent structure broken up by a variety of different 
antiphase boundaries (van Tendeloo & Amelinckx, 1979; 
van Tendeloo, Wolf, van Dyke & Amelinckx, 1978). Of 
interest here are the two compounds Au3Mn and 
AusMn 2. The structure of Au3Mn is shown in Fig. 
4(a). It consists of alternating sheets of Au and Mn 
atoms. The structure of the AusMn 2 phase is, in effect, a 
CS structure which may be geometrically derived from 
the parent by the removal of every sixth Au plane and 
subsequent collapse of the structure. The result of this 
operation is shown in Fig. 4(b). The relationship between 
these crystallographic parameters and the shift-lattice 
parameters can be seen from Fig. 4 to be a I = c, a 2 = a, 
a 3 being, in shift-lattice terms, redundant. Similarly, the 
shift parameters are E 1 = 1 ,  62 = I with e 3 not being 
needed. 

The diffraction pattern from this space, which is 
shown in Fig. 4(c), does not, at first sight, conform to 
that illustrated in Fig. 2. This is due to the fact that the 
planar boundaries in the Au-deficient structure are rather 
close together and the 'superlattice' spots are commen- 
surate. If the planar boundaries are imagined to move 
further apart, it is possibe to visualize, by reference to 
Fig. 2, that the 'superlattice' reflections will approach 
each other, and that the envelope of these groups of spots 
will become narrower, leading to diffraction patterns 
closely resembling those shown in Fig. 2. 

3.3. N e w  structures 

By varying the shift-lattice parameters even slightly, 
one can construct many motif arrangements and estimate 
the form of their diffraction patterns without recourse to 
traditional diffraction theory. This has a great advantage 
when long-period or incommensurate phases are 
involved. Indeed, it is a straightforward procedure to 
construct large numbers of new hypothetical structures 
from experimentally observed shift-lattice parameters, as 
can be illustrated with respect to the TiO2-related 
structures. This system has been selected because, 
despite the considerable amount of work which has 
already been published on these structures, new possi- 
bilities are easily generated. 

As outlined above, in the rutile-based CS structures, 
the CS planes run from (121) to (132) and consist of 
regularly ordered sequences of the antiphase boundary 
element A and the collapse element C, which alternate 
along the length of the CS plane. The C and A 
components are separated as much as possible along 
the CS plane length, leading to the 'principle of 
maximum dispersion' suggested by Hyde & Andersson 
(1989). All these structures can be generated by a 
variation of the argument of g. However, ambiguities can 
occur, as pointed out by Hyde & Andersson (1989), and 
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these can similarly be produced and are shown for the 
case of { 132} CS in Figs. 5(a), (b) and (c). In Figs. 5(a) 
and (b) (in which the bounds of the g functions which 
give rise to the structures are shown as continuous lines), 

both of the CS planes shown consist of alternating AC 
sequences. The composition of the two structures will be 
be the same. The unit cells will be different, however, 
and in practice, which of the two structures actually 

cl 
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Fig. 3. Idealized representation of planar boundaries found in reduced rutile: (a) the rutile structure; (b) an antiphase boundary on (011), made up 
entirely of  A units; (c) trace of CS plane (121 ) . . . .  CCC...; (d) CS plane (132) . . . .  ACAC...; (e) CS pane (253) . . . .  ACCACC...; ( f )  CS plane 
(374) . . . .  ACCC . . . .  The open circles represent O atoms and the filled circles Ti atoms. 
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Fig. 4. (a) The Au3Mn structure. The open circles represent Au and the 
filled circles Mn. The diagonal line through the Mn atoms shows a 
collapse plane. Collapse by the vector indicated at the lower left 
eliminates a plane of Au atoms. Regular repetition of this operation 
leads to the AusMn 2 structure shown in (b). (c) Schematic diagram of 
the hOlf.c.c, plane of the diffraction pattem from AusMn 2, from van 
Tendeloo, Woolf, van Dyke & Amelinckx (1978). 

forms may depend upon terms such as strain energy 
introduced by metal-metal interactions in the boundaries. 
In Fig. 5(c), the sequence of units down each plane is the 
same and the planes are alternately A and C types. The 
composition of the crystal remains the same as in the first 
two cases, however, as the total number of A units 
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Fig. 5. (a)-(c) Schematic diagrams of 132 boundaries in ruffle, with 
only metal-atom positions shown. The g functions are shown as lines. 
Three different patterns result, all of which have the same 
composition. The heavy lines outline the simplest unit cells. The 
patterns of the collapsed (C) and antiphase (A) structure in each case 
are summarized to the left of every diagram. 
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remains the same as that of C units. The change in 
arrangement is brought about by varying the width of the 
g functions slightly with respect to those in the first two 
diagrams. In the pair of diagrams Figs. 6(a) and (b), two 
arrangements are shown for (253) CS. Although the same 
ambiguities just illuslrated for the (132) case can also be 
drawn for this structure, we choose instead to display a 
composition anomaly. The CS planes normally observed 
are depicted in Fig. 6(a) and consist of repeating 
sequences CCA. The alternative arrangement AAC shown 
in Fig. 6(b) is oxygen-rich compared with that in Fig. 
6(a). Finally, we note with respect to Figs. 5 and 6 that 
many other arrangements of the A and C motifs can be 
depicted and by systematically widening the g-function 
envelopes, without changing their orientation or degree 
of overlap, we may create a homologous series of 
structures for each arrangement. 

The widths of the unit cells of the structures depicted 
in Figs. 5(a) and (c) are twice the spacing fl of the g 
functions, while in the remaining portions of Fig. 5 and 6 
they are equal to ft. For other choices of t ,  the width of 
the unit cell may be any integral multiple of fl or, in the 
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(b) 

Fig. 6. (a) and (b) Schematic diagrams of 253 boundaries in rutile, with 
only the metal-atom positions shown. The g functions are shown as 
lines. The convention adopted is that a motif falling exactly on a line 
is included. The two patterns which are depicted represent different 
compositions, although the boundaries have the same indices. 

case of a truly incommensurate structure, infinity. With 
the shift-lattice view of these structures, however, the 
unit-cell size assumes a position of lesser importance; the 
fundamental quantity determining the positions of the 
diffraction spots is the inter-g-function spacing t ,  as is 
made clear in (2.7) by the existence of the ~a. comb. 

As an example of the rich variety of structures which 
may be generated by the shift-lattice principle, we show, 
in Fig. 7, a shift lattice (based on the same subcell as that 
in Figs. 5 and 6) with overlapping g functions. The 
nature of the boundaries is here more complex than in the 
previous two figures, giving the motif pattern the 
appearance of arrays consisting of hexagons of two 
different sizes. 

The diffraction patterns from these constructions may 
be derived by application of the rules described earlier. 
The theory presented in this paper allows one quickly to 
see the essential features of the diffraction patterns of a 
wide variety of lattices with planar faults without the 
necessity of performing a Fourier transform on a 
particular structure. In other words, it enables a specimen 
to be surveyed in reciprocal space as a member of a 
genus rather than in isolation. 

4. Concluding remarks 

In this paper, crystals made up of ordered repeating slices 
of a parent structure have been explored as examples of 
shift lattices and the general form of the appropriate 
Fourier transforms of these structures has been 

Fig. 7. A hypothetical structure based on the same sublattice and having 
the same e~ and e 2 as those of Figs. 5 and 6. Here, the g functions 
overlap and a pattern of radically different character is produced. 
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developed. Unlike earlier papers (Harburn, Tilley, 
Williams & Williams, 1991, 1993), which dealt with 
one-dimensional cases, the theory in this paper covers all 
possible planar shift-lattice distributed slabs of perfect 
crystals with an arbitrary three-dimensional vector shift 
between neighbouring slabs. In this way, antiphase 
boundaries, CS structures and many other configurations 
may be treated and their diffraction patterns visualized. 
In addition, it is noted that the theory does not need the 
lattice fragments which are in shift-lattice relationships 
with one another to be in physical contact. Hence, the 
structures built up of two or more lattice fragments can 
be formed as well as the diffraction patterns that they 
give rise to, provided that the shift-lattice rules are 
obeyed. Such an approach has been used to interpret the 
structures of some L-Ta2Os-related oxides (Harbum, 
Tilley, Williams & Williams, 1993). 

It is gradually becoming evident that a large variety of 
different solids have shift-lattice formations of one sort or 
another. The overview provided by the shift-lattice 
approach to structures built up from ordered arrays of 
planar faults and the diffraction patterns which they give 
rise to, which has been given here, allows broad families 
of apparently different structure types to be related one to 
another and new structures to be suggested. This 
procedure has a utility in aiding the search for new 
structures and suggesting interpretations of incommen- 
surate diffraction patterns. In addition, it poses a question 
for the crystal chemist, who has to explain why one 
arrangement is preferred to another. 

Appendix 

Introduction 

Although some of the results presented earlier in this 
paper are three-dimensional, the analysis presented here 
will, for the sake of brevity, be two-dimensional, there 
being no formal difficulty in the extension to three 
dimensions, but merely more symbols. We now list the 
various standard results which we shall need in the 
analysis; they are all to be found in, or easily derived 
from, results in the books by Bracewell (1978) or 
Champeney (1973, 1987). 

With r as the position vector in the plane, we may 
define the point-delta function with its singularity at the 
origin, namely 8(r), by the equation 

f 8(r) go(r) dr = go(O), (A1) 

where dr is an elementary area in r space. This equation 
is to be interpreted as follows. If (A1) is true for any 
function go(r), which is finite and continuous in the 
neighbourhood of the origin, then the symbol 8(r) in that 
equation describes the required point-delta function. It 
may be visualized as a 'spike' of infinite height and zero 
width at the origin of r such that is integrated volume is 
unity. 

The idea of the comb is central to this analysis and we 
state here the useful notation 

6a(x ) = ~ 8 ( x -  ma) (A2) 
m 

due to Hsu (1967). We next state the identity 

31(x) = ~ exp (-2zrimx) (A3) 
m 

which is treated in standard books on Fourier-transform 
theory and discussed in some detail by Harburn, Tilley, 
Williams & Williams (1993). 

Extending this notation to two dimensions, we may 
define two types of comb, namely the point comb 

~a(r) = ~ ~(r - ma) (A4) 
m 

and the two-dimensional comb 

t~al,a2(r ) -- ~ ~ 6[r - (ma I + na2) ]. (A5) 
m n 

Equation (A4) describes a single row of point singula- 
rities spaced a apart in r space, while (A5) describes a 
two-dimensional lattice with parameters a I and a 2. 

We next mention the well known concept of reciprocal 
* * of vectors reciprocal to vectors, namely that a set a I , a 2 

the set a I , a 2 (these latter two vectors being non-zero and 
not parallel or antiparallel to each other) may be defined 
by the equation 

( aT "ala~ "a2) = I, (A6) 
a~ ala~ a2 

where I is the unit matrix. A fundamental property of 
reciprocal vectors is their appearance in the expansion of 
an arbitrary vector in terms of any two basis vectors, say 
a 1 and a 2. Specifically, any vectror r may be expressed 
a s  

r = (aT" r)al + (a~. r)a 2, (A7) 

as may readily be shown from (A6). We may also state, 
using reciprocal vectors, a two-dimensional version of 
the Fourier-transform similarity theorem, namely that if 

~ f (x, y) = F (u, v) 

(r having rectangular Cartesian components x and y and 
the reciprocal space s having the corresponding compo- 
nents u and v), then 

.T'f(aT. r, a~. r) = IAa,.a2 IF(a I • s, a 2 • s), 

where Aa~,a2 is the area of the parallelogram defined by 
the vectors a~ and a 2. We shall, in fact, need only a 
special case of the above equation, namely that if 

Y'fl(x)fz(y) = Fl(u)Fz(v ) 

(F 1 and F 2 being the one-dimensional transforms of fl 
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and f2, respectively), then 

~ ' f l (a~"  r)f2(a~- r) = IA~,.a~l F l ( a  I • s)F2(a 2 • s). (m8) 

The above generalization of the similarity theorem may 
be derived in reciprocal-vector form from the matrix 
form treated by, for example,  Jones (1982) and Arsac 
(1966). 

We now state the shift theorem, namely that if 
.~ ' f ( r )  = F(s),  then 

~ - f ( r  - ro) = exp( -2z r i r  o • s )F(s) ,  (A9) 

where r o is a constant vector in r space. 
Two-dimensional  convolution of two functions f l  and 

f2 is defined as 

f~(r) * f 2 ( r ) =  f f ~ ( t ) f 2 ( r - t )d t ,  (A10) 

where t is a dummy variable in r space and the integral is 
over all t. The version of the convolution theorem that we 
shall need is 

.T'fl(r)f2(r) = El(s) • F2(s). ( A l l )  

We shall also need the identity 

8(s) -- IAa~,a2 lS(a I • s)8(a 2 • s). (A12) 

Equation (A12) may be interpreted as follows. The delta 
function cS(a 1 • s) in two dimensions is a line-delta 
function whose singularity is a straight line through the 
origin of r space perpendicular to the vector a~. 
Similarly, 8(a 2 • s) has its singularity on a line perpendi- 
cular to a 2. The point of  intersection of the lines 
a~ • s ---- 0 and a 2 • s = 0 (namely the origin) is the 
position of the point singularity of 8(s). The term 
!Aa~.a2l may be derived by putting both sides of (A12) 
m turn into the definition (A 1) of  the delta function. 

Finally, we state that the Fourier transform of a two- 
dimensional  comb is another comb; specifically 

~'Sa~,a2(r) = IAa;,a~l 8~;,a~(S), (m13) 

a result standard to crystallography, which is discussed in 
many textbooks on the subject, for example,  Woolfson 
(1970). 

The Fourier transform of the representation of a shift- 
lattice distributed system of planar faults in an otherwise 
perfect crystal lattice 

It is explained in some detail in §2 that the two- 
dimensional  s t ructuref(r) ,  with which we are concerned 
in this paper, may be represented by 

f ( r ) =  ~-~g[w~.(r--m#)]8~,,~2(r-m7), (A14) 
m 

where 7 is the vector describing the displacement 
between the perfect crystal lattice inscribed in one slab 
and that inscribed in a neighbouring slab. It is our 

purpose here to obtain a suitable expression for the 
transform of (A14). We begin by transforming this 
equation term by term using the convolution theorem 
(A11), the similarity theorem (A8) (with w T and w~ as a 
set of  vectors to which w~ and w 2 are reciprocal), the 
shift theorem (A9) and the transform (A13) of the two- 
dimensional  comb. We obtain 

F(s)  = ~-'~[IAw~,w2 IG(w 1 • s)8(w 2 • s ) e x p ( - 2 z r i m p ,  s)] 
m 

• [[Aa;,a~ 18a;.a~(s)exp(-2nim 7 • s)]. (A15) 

Here G is, of  course, the one-dimensional transform of g 
defined by 

G(u) -- f g(x) exp(-2zr iux)  dx. 

We now expand (A15) by the definition (A10) of  
convolution and obtain 

F(s)  = A ' ~  f 6a;.~(t) e x p ( - 2 n i m ?  • t) G[w~ • (s - t)] 
m 

x 3[w2. (s - t ) ] e x p [ - 2 n i m p .  (s - t)]dt, (A16) 

where A' = IAw,.w2A~T,a~ I. We rearrange (A16) thus 

F ( s )  = A' f 8aT,~(t ) G [ w  I • (s - t)] 8[w 2 • (s - t)] 

x ~ exp{-2rr im[0,  - f l ) .  t + p .  s]} dt. 
m 

Applying the identity (A3) to the sum of exponentials,  
we obtain 

F(s)  = A' f 8a;,a~(t)G[w 1 • (s - t)] 

x 8[w2.  (s - t ) ] ,~[(r  - # ) .  t + p .  s]dt.  

We now expand 8~;,a~(t) by means of (A5); it is 
convenient to use 

ha~ + ka~ = a h k  , 

where h and k are integers. We obtain 

F(s)  = A'y'~ ~ f 8(t - a~,)G[w~. (s - t)] 
h k 

x ~[w 2 • (s - t)] 8~[ (7-  p ) .  t + ]/ .  s]dt  

= A'~-~ ~ Gtw I • (s - a~k)] 
h k 

x ~[w2.  (s - a~,)] 8~[(r - # ) .  a~,, + # .  s] 

• this becomes by (A1). With s - ahk = Shk, 

F(s)  = A' ~--~' ~ a ( w  1 • S h k ) ~ ( W  2 • Shk)t~l(l~.Shk -Jr- ~1. a*hk). 
h k 

(A17) 

The product of  the 8 function and the 8~ function in 
each term of (A17) is a comb consisting of a single row 
of equispaced point singularities; our remaining task is to 
get it into the form of (A4) which will reveal exactly 
where each ' tooth'  of  the comb resides in s space. We 
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use 

T - -  ~ ( w  2 • Shk ) ~1 (~ 'Shk  "Jr- 7" a~k) 

= ~ 8(w 2 • Shk ) 8 ~ .  Shk + 7" a~k -- P) 
p 

by (A2). We now use K s = p - 7" a*hk, whereupon 

r = ~ 8(w 2 • Shk)SLg. (Shk - ks#*)], (A18) 
P 

where fl, w 2 are the vectors reciprocal to fl*, w~. 
(Although we are using w 2 as a vector in two reciprocal 
systems, namely that reciprocal to w~, w~ and also 
w~, fl*, the vectors fl* and w~ are unique since both 
systems are orthogonal. Were they not so, we would have 
to define two different vectors w 2 in the two different 
systems.) In order to equate (A18) with a comb of the 
form (A4), we need to express (A18) in the form 

T = E ~[W2 • (Shk - -  S)]c~[f l" (Shk - -  S ) ] ,  (A19) 
p 

where S is a vector to be determined To do this, we 
proceed as follows. First, we compare (A18) and (A19), 
whence 

W 2 • S = 0 and # .  S = f t .  kpfl* = Kp (A20) 

by (A6). We now expand S as a linear combination of the 
set w~, fl* (whose reciprocal set is w z, fl) using (A7) and 
obtain 

displacement at a planar fault). We have immediately 

7" ahk : ( e l a l  -Jr e2a2) • (ha~ + k a y )  

= he ! + ke2, 

by (A6). We therefore f'mally obtain, in two dimensions, 
the following: if  

f ( r )  = ~-'~ g[w T • (r - mfl)]tSat,a2[r - m(ela  I + e2a2) ], 
m 

then 

F(s) = a ~ ~ G(w I • Shk)6fl*[Shk "Jr- (hel + kez)fl*], 
h k 

where Shk = S -- a~, k and a~k = ha T + kay. 
The analysis in three dimensions proceeds along lines 

identical to the above and we find that if 

f ( r )  = ~ g[w~'. (r - m#)] 
m 

X ~al ,a2 ,a3[ r  - -  m(ela 1 + e2o. 2 + E 3 a 3 ) ] ,  

then 

F(s) -- V ~ ~ ~ G(w,-ShU) 
h k 1 

x 8~,[Shu + (he a + ke 2 + le3)fl* ], 

where Shk I = S - -  (ha~ + ka~ + la;) and V is a combina- 
tion of volumes analogous to A. 

s = (w2. S)w; + q~. s ) / r  

= K A r  

by (A20). Therefore, (A19) becomes 

r = ~ ~[w2-(sh, - KAr)]  ~La. (sh, - KAr)]  
p 

-- [aw2,t~[ ~ 8(Shk -- Kpfl*), 
p 

by (A 12) 

ah~),0 ] - p/r}  T = IAw2,pl~Sl[snk + ( y .  * * 
p 

-- Iaw2,pl 8r[Shk + (7" a~,k)P*], 

by (A4). Therefore, (A17) becomes 

• ahD# ], (321) F(s) = A ~ ]  ~ G ( w  I • Shk )S0*[shk + (r * * 
h k 

where A = A'lAw2.pl. 
Equation (A21) is a tractable form of the transform of 

(A14). However, it proved useful in our discussion in §2 
to particularize 7 by putting it into the form 

7 : E l a l  "[- E2a2  

(where e I and e 2 may be regarded as the fractions of a 1 
and a2, respectively, by which the perfect lattice suffers 
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